

Isolation of compound 2. The *n*-butanol fraction on subsequent column chromatography over silica gel (EtOAc-MeOH 7:3) furnished compound 2 as a viscous light yellow solid (100 mg).

Acetylation of 2. Compound 2 (50 mg) on acetylation with Ac₂O/pyridine afforded heptaacetate 2a (40 mg); IR ν_{max} cm⁻¹: 2980, 2940, (Me), 1750 (OAc), 1650, 1440, 1370, 1230 (ester), 1040, 910, 920, 760, 600; ¹H NMR (CDCl₃): δ 1.15 (6H, *d*, *J* = 8 Hz, 2 \times Me), 1.95 (21H, *brs*, 7 \times Ac), 3.55 (1H, *m*, methine proton), 4.70 (2H, *d*, *J* = 8 Hz, Ar-CH₂) 4.0-4.2, 4.7-5.0 (12H, *m*, sugar protons), 4.98 (1H, *d*, *J* = 7 Hz, glycosyl H-1), 5.20 (1H, *d*, *J* = 7 Hz, galactosyl H-1), 6.70, 7.65 (2H each *d*, *J* = 9 Hz, Ar-H); ¹³C NMR (CDCl₃): δ 15.0 (C-8, 9), 20.2 (7 \times MeCO), 38 (C-7), 40 (C-10), 62.1 (C-6'), 64.1 (C-5'), 65.8 (C-5), 67.1 (C-3'), 69 (C-4'), 73.0 (C-2'), 75.9 (C-4''), 77.3, 77.5 (C-2', 3'), 79 (C-5''), 94.3, 94.8 (C-1', 1''), 127 (C-3, 5), 128.5 (C-2, 6), 137 (C-1), 145 (C-4), 170 (7 \times MeCO).

Mild hydrolysis of 2. Compound 2 (30 mg) was dissolved in 2% H₂SO₄ with addition of a few drops of MeOH and heated gently on a water bath for 1 hr. The hydrolysates were examined for sugars after each interval of 5 min. by co-PC (Whatman No. 1, *n*-BuOH-C₆H₆-pyridine-H₂O = 5:1:3:3, 48 hr) along with authentic samples of glucose and galactose. It was observed that the first sugar obtained during hydrolysis was glucose (hrf. 35.0) while galactose (hrf. 30.5) was detected later.

Compound 3. Obtained as light yellow oil by hydrolysis of compound 2 with dil. HCl on extraction with ether. ¹H NMR and MS data identical to those of cuminal alcohol.

Acknowledgements.—The authors thank Dr A. Husain (Director,

CIMAP, Lucknow) and CSIR, New Delhi, for awarding a Research Associateship to one of us (BA).

REFERENCES

1. Dhar, M. L., Dhar, M. M., Dhawan, B. N., Mehrotra, B. N., Srimal, R. C. and Tandon, J. S. (1971) *Indian J. Exp. Biol.* **11**, 43.
2. Dubey, M. P., Srimal, R. C., Patnaik, G. K. and Dhawan, B. N. (1974) *Indian J. Pharm.* **6**, 15.
3. Tandon, J. S., Dhar, M. M., Ramakumar, C. and Venkatesan, K. (1977) *Indian J. Chem.* **15B**, 880.
4. Bhat, S. V., Bajwa, B. S., Dornaur, H. and de Souza, N. J. (1977) *Tetrahedron Letters* 1669.
5. de Souza, N. J., Dohadwalla, A. N. and Rupp, R. H. (1986) *Forskolin-Its Chemical, Biological and Medicinal Potential*. Hoechst India Ltd, Bombay.
6. Seman, K. B. (1984) *Ann. Rep. Med. Chem.* **19**, 293.
7. Mathela, D. K., Kharakwal, H. B. and Mathela, C. S. (1986) *Fitoterapia* **57**, 299.
8. Deyama, T., Ikawa, T., Kitagawa, S., Nishibe, S. (1987) *Chem. Pharm. Bull.* **35**, 1785.
9. Seidel, C. F., Schinz, H. and Muller, P. H. (1944) *Helv. Chim. Acta* **27**, 662.
10. Harborne, J. B. (1965) *Phytochemistry* **4**, 107.
11. Marbry T. J., Markham, K. R. and Thomas, M. B. (1970) *The Systematic Identification of Flavonoids*, pp. 268, 270. Springer, New York.

Phytochemistry, Vol. 27, No. 10, pp. 3310-3311, 1988.
Printed in Great Britain.

0031-9422/88 \$3.00 + 0.00
© 1988 Pergamon Press plc.

FUSALANIPYRONE, A MONOTERPENOID FROM *FUSARIUM SOLANI*

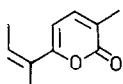
WOLF-RAINER ABRAHAM and HANS-ADOLF ARFMANN

GBF-Gesellschaft für Biotechnologische Forschung mbH, Mascheroder Weg 1, D-3300 Braunschweig, F.R.G.

(Received 10 February 1988)

Key Word Index—*Fusarium solani*; Deuteromycetes; Moniliales; fungal metabolite; monoterpenoid; α -pyrone; fusalanipyrone.

Abstract—6-(2'*Z*-butenyl)-3-Methyl- α -pyrone was isolated from the fungus *Fusarium solani* strain DSM 62416 and named fusalanipyrone. This monoterpenoid was not present in *F. solani* strain DSM 62413.


INTRODUCTION

Some species of the genus *Fusarium* are known to produce sesquiterpenes. While some strains produce sesquiterpenoids with the trichothecane skeleton, *F. culmorum* (W. G. Smith) Sacc. produces culmorin, a longicamphanadiol. Up to now, no monoterpenoids have been reported from this genus.

RESULTS AND DISCUSSION

When grown on a medium containing 1% glucose, 1% universalpeptone (Merck), 2% malt extract and 0.3% yeast extract, *F. solani* (Martins) Saccardo DSM 62416 excreted an UV absorbing compound into the medium. Extraction of the medium and chromatography of the extract gave a viscous oil. The mass spectrum gave a

molecular ion of the composition $C_{10}H_{12}O_2$. The 1H NMR spectrum displays a broad doublet at δ 1.81 of three protons. This methyl group is coupled to a double quartet at δ 6.62 of one proton which has a long range coupling to a methyl group at δ 1.84. This coupling system belongs to a 2-but enyl moiety. Irradiation at δ 6.62 caused an NOE of the resonance at δ 1.84 which pointed to a Z-configuration of the 2-but enyl side chain. Another group of protons contains a doublet at δ 6.04 of one proton which is coupled with a doublet at δ 7.12 (1H). This doublet at lowfield displayed a small coupling to a methyl group at δ 2.09. The absorption in the IR spectrum at 1720 cm^{-1} together with the shifts of the protons in the NMR spectrum is only in agreement with a 3,6-disubstituted α -pyrone. Taking all the information together the metabolite produced by *F. solani* DSM 62416 is 6-(2'Z-but enyl)-3-methyl- α -pyrone (**1**) which we named fusalanipyrone.

1

To the best of our knowledge this compound has never been described as a natural product. The 3'E-stereoisomer was synthesized in 1970 by Dreiding and co-workers [1]. A closely related compound, nectriapyrone (4-methoxy-fusalanipyrone), was isolated in 1975 by Nair and Carey from *Thyronectria missouriensis* (Ell et Ev) Seaver [2]. Nectriapyrone displays antibacterial activity against *Staphylococcus aureus*, fusalanipyrone in contrast is not active against *Staphylococcus* and *Escherichia coli*, but is a weak antibiotic against *Candida albicans*, *Mucor* and *Trichoderma koningii*.

The occurrence of monoterpenoids in fungi is very rare and has only been reported for *Thyronectria missouriensis*, *Pleurotus euosmus* [3], *Kluyveromyces lactis* [4], *Ambrosiozyma monospora* v. d. Walt [5], *Phellinus* spp. [6], *Eremothecium ashbyii* [7], *Ceratocystis* spp. [8], *Trametes odorata* [9], *Gloeophyllum odoratum* [10], and *Cystostereum muraii* [11]. The fact that *F. solani* strain DSM 62413 does not produce fusalanipyrone underlines the observation that relatively few strains posses the ability of monoterpenoid biosynthesis.

EXPERIMENTAL

The fungus was precultivated at 27° and 100 rpm in $5 \times 100\text{ ml}$ EM flasks containing 20 ml of the following medium: 1%

glucose, 1% universalpeptone (Merck), 2% malt extract and 0.3% yeast extract. After 48 hr the cultures were transferred to five 1 l flasks filled with 200 ml of the medium and incubated for another period of 24 hr. Then after 1, 3, and 7 days samples were taken and analysed as follows: to 1 ml of culture broth 0.2 ml EtOAc were added and shaken for 2 min prior to centrifugation. 10 μl of the EtOAc extract were subjected to HPTLC (CH_2Cl_2). The spots were visualized by UV absorption at 254 nm or by spraying with anisaldehyde- H_2SO_4 in HOAc and heating to 140° for 1 min.

Extraction and purification. Culture medium and mycelia were separated by filtration and both extracted ($\times 3$) with EtOAc. The solvent was evapd and the crude extract separated on silica gel-60 columns with a *n*-hexane-EtOAc acetate gradient (changing from 19:1 to 1:1). When necessary the collected fractions were purified further by prep. TLC. Under these conditions *Fusarium solani* DSM 62416 produced 30 mg/1 2-phenylethanol and 4 mg/1 fusalanipyrone.

Spectral measurements. NMR; ^1H at 400 MHz, ^{13}C at 75.5 MHz, CDCl_3 was solvent and TMS int. standard; IR: CHCl_3 ; MS: 70 eV.

Fusalanipyrone (1). Colourless, viscous oil. IR: 1720 cm^{-1} . ^1H NMR: δ 1.81 (3H, br *d*, *J* = 7 Hz, 4'-H), 1.84 (3H, br *s*, 1'-H, 2.09 (3H, br *s*, 5'-H), 6.04 (1H, *d*, *J* = 7 Hz, 5-H), 6.62 (1H, br *q*, 3'-H), 7.12 (1H, br *d*, *J* = 7 Hz, 4-H).

Acknowledgement—We are indebted to Dr E. Forche and Dr F. Sasse for testing the biological activity of fusalanipyrone.

REFERENCES

1. Rey, M., Dunkelblum, E., Allain, R. and Dreiding, A. S. (1970) *Helv. Chim. Acta* **53**, 2159.
2. Nair, M. S. R. and Carey, S. T. (1975) *Tetrahedron Letters* 1655.
3. Drawert, F., Berger, R. G. and Neuhaeuser, K. (1983) *Eur. J. Appl. Microbiol. Biotechnol.* **18**, 124.
4. Drawert, F. and Barton, H. (1978) *J. Agric. Food Chem.* **26**, 765.
5. Klingenberg, A. and Sprecher, E. (1985) *Planta Med.* 264.
6. Collins, R. P. (1976) *Lloydia* **39**, 20.
7. Mirinov, V. A., Tsibulskaya, M. T. and Yanotovsky, M. T. (1982) *Prik. Biol. Mikrobiol.* **18**, 343.
8. Schindler, J. and Schmid, R. D. (1982) *Process Biochem.* **17**, 2.
9. Halim, A. F. and Collins, R. P. (1971) *Lloydia* **34**, 451.
10. Hanssen, H.-P., Sinnwell, V. and Abraham, W.-R. (1986) *Z. Naturforsch.* **41c**, 825.
11. Abraham, W.-R. and Hanssen, H.-P. (1987) *Proc. 4th European Congress on Biotechnology, Amsterdam*, Vol. 3, 294.